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ABSTRACT

In this paper, we propose a computational framework for 3D volume
reconstruction from 2D histological slices using registration algo-
rithms in feature space. To improve the quality of reconstructed 3D
volume, first, intensity variations in images are corrected by an in-
tensity standardization process which maps image intensity scale to
a standard scale where similar intensities correspond to similar tis-
sues. Second, a subvolume approach is proposed for 3D reconstruc-
tion by dividing standardized slices into groups. Third, in order to
improve the quality of the reconstruction process, an automatic best
reference slice selection algorithm is developed based on an iterative
assessment of image entropy and mean square error of the registra-
tion process. Finally, we demonstrate that the choice of the reference
slice has a significant impact on registration quality and subsequent
3D reconstruction.

Index Terms— Image reconstruction, Histology, Elastic Regis-
tration, Entropy, Edgeness.

1. INTRODUCTION

2D imaging methods, such as optical microscopy, are still preferable
to 3D imaging methods due to their high level of specificity and high
resolution properties. Histological sections (slices) obtained through
2D imaging methods provide useful information for the diagnosis or
the study of pathology. Although 2D histological slices have great
impacts on quantification and visualization of clinical data, 3D vol-
ume reconstruction from these 2D slices is required in order to fully
appreciate anatomical structures [1].

Typically, a 3D volume is reconstructed by registering (aligning)
the 2D sections with respect to a chosen reference and stacking suc-
cessive aligned sections [2]. As the acquisition processes of different
2D histological images are performed independently, slice misalign-
ment and deformation is often unavoidable. The deformation varies
from section to section and non-cohorent distortions may exist in
consecutive sections. Choosing an arbitrary slice as a reference slice
leads to errors in 3D volume reconstruction, hence, the reference
slice should be chosen properly not to contain distortions in order to
achive high quality volume reconstruction [3, 4].

Fully automatic registration of histological slices and recon-
struction of 3D volume are necessary for two reasons. First, since
manual registration using interactive alignment is non-reproducible
and user dependent, it cannot be used if the number of slices is
large [1, 2]. To quantify changes between images, motion and
deformation characteristics specify the type of transformation (reg-
istration). Since histological slices change smoothly from slice to
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slice and the section distortions induced by the preparation process
are local in nature [3, 5, 4], accurate alignment of these slices can be
achived by using elastic registration methods. Second, since manual
selection of the best reference slice (BRS) uses qualitative measures
and ignores the image information content, optimum smooth 3D
volume reconstruction cannot be guaranteed.

In this paper, we present a fully automatic 3D reconstruction
method which tackles three difficult problems in registration of his-
tological images. Section 2 explains an important preprocessing
method, called standardization, which captures intensity variations
between slices and plays a significant role in identifying BRS selec-
tion. In Section 3, the edgeness space is presented for the registration
framework to provide better global alignment and to avoid possi-
ble misalignments. Section 4 briefly explains locally affine globally
smooth (LAGS) registration method. Based on iterative assessment
of image entropy and Mean Square Error (MSE) of the registration
process in feature space, an automatic BRS selection algorithm is
described in Section 5. To evaluate reconstructed volume qualita-
tively and quantitatively, we use both Correlation Alignment Mea-
sure (CAM) and proposed Standard Deviation Maps (SDM) in Sec-
tion 6. Evaluations and discussions are given in Section 7.

2. STANDARDIZATION OF IMAGE INTENSITY SCALE

Image intensity variations are not only influenced by the distribution
of light sources, but also the content (different tissues) of the im-
ages as different tissues show different intensity levels. To avoid the
effects of illumination conditions and identify those intensity vari-
ations due to different tissue types, a standardization procedure is
applied to histological images.

Standardization is a non-linear pre-processing technique which
maps image intensity histogram (scale) into a standard intensity
histogram (scale) so that similar intensities will have similar tissue
meaning after standardization. Standardization was firstly developed
for MR images [6]. In previous works [3, 4], we applied this method
to standardize histological images.

Figure 1 shows slices before and after standardization. The first
row shows the original data displayed using the default window set-
ting. The second row shows the same slices after standardization
displayed using the ”standard” window settings with the parameters
defined in [3, 6, 7, 4].

3. FEATURE SPACE

Choice of the feature space plays a significant role in image registra-
tion especially if the similarity metric is based on the optimization
function independent of spatial information such as mutual infor-
mation. Since these kind of registration methods do not take into
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Fig. 1. Various Original slices before (first row) and after (second
row) standardization

consideration the spatial information of pixel/voxel intensity distri-
bution/variation, the optimization algorithm may get stuck in lo-
cal maximum resulting in misalignment. Defining a feature space
capturing variations of gray-level characteristics will overcome the
drawbacks of intensity based approaches. To align the images glob-
ally, we used a particular feature space which represents an image
by continuous variables, called edgeness, and describes the intensity
variance of a predefined region over the image [8, 3, 4].

We represent an image (section/slice/scene) by a pair F =
(F, g) where F is a two-dimensional (2-D) array of scene elements
(pixels) and g is intensity function, whose domain is F . We assign
an integer intensity value for each pixel o ∈ F. Edgeness feature
space is defined by the pair Fe = (F, rf ) = (F, g, rf ), where rf is
a fixed radius for each region. At image coordinate r0, the edgeness
is represented by

Fe =
X

|ri−r0|<rf

|g(ri)− g(r0)|, (1)

where rf is the radius. It should not be concluded that the process is
just emphasizing edges and deciding whether a specific voxel/pixel
belongs to the edge or not [8, 3, 4]. Instead, within a specified radius
value, the image feature content is forced to stay beyond a variation
level which prevents the registration process from getting stuck in
local maxima.

4. LOCALLY AFFINE NONLINEAR TRANSFORMATION

Local alignment (elastic) of images is obtained through Locally
Affine Globall Smooth (LAGS) registration method described
in [9, 7, 3]. Since consecutive slices are not exactly the same,
rather slices vary smoothly, LAGS registration algorithm fits well
to the problem. For 2D images, 8 affine parameters are needed to
fully identify changes between images. Two of these affine parame-
ters are needed to capture local brightness and contrast patterns [9]
and 6 affine parameters are used to capture local deformations for
2D images. Since the standardization procedure has been used to
remove intensity variations among the same tissue types, there is no
need to use these 2 affine parameters. Briefly, LAGS registration
algorithm uses the difference image of source and target image as

an optimization function and tries to minimize it over small local
image domain. Readers are strongly encouraged to read [9, 7, 3, 4]
to understand the theory of LAGS and the modified algorithm which
takes into account the standardization procedure.

5. AUTOMATIC BEST REFERENCE SLICE SELECTION

The quality of the 3D volume reconstruction process mostly depends
on the choice of the reference slice. The reference slice is used as
a target image and all the remaining slices are being considered as
source images to be registered onto the target image. If the reference
slice is distorted or noisy, reconstructed 3D volume will not be opti-
mal. Once the reference slice is identified as target image, registra-
tion based fusion methodology can be applied for reconstruction [2].

Selecting best reference slice can be based on high confidence
image features such as MSE, entropy, edge, texture, color, intensity
histograms, etc.

1. MSE: In the case of distortions, structural discontinuity is not
minimum even for the consecutive slices. When affine regis-
tration is performed for global alignment of images, the op-
timization procedure tries to minimize MSE between images
but due to distortion, it will not reach low MSE values. Fur-
thermore, it is also known that with small SNR values, align-
ment is difficult, leading to high registration errors. There-
fore, MSE can be used as a tool for checking whether the
slices are distorted or not. While high MSE values indicate
most probably distorted and noisy slices, low MSE values in-
dicate strong similarity between consecutive images.

2. Edge: In feature space, we emphasise edgeness features of an
image by mapping image space into the feature space where
edgeness parameters hold both edge information and spatial
variations of pixel intensities over all regions in the image.
Therefore, we assume that MSE between any image pair al-
ready includes high confidence information related to edges.

3. Contrast/Brightness: Contrast/brightness patterns also play
an important role in image contents. Since the standardization
method has been used to correct intensity variations, intensity
for the same tissue is the same for all images.

4. Entropy: Entropy is another measure often used to charac-
terise the information content of a data source. It has been
used as a metric for image registration in the form of mutual
information. Large mutual information between images im-
plies high similarity and vice versa.

To select BRS automatically, one needs to define a metric which
describes the reference slice in terms of noise, distortion and infor-
mation content levels. As in [3, 4], BRS can be formulated as

BRS = argmax
i�=j∈V

j
log

„
E(j)

MSEi,j

«ff
, (2)

where MSEi,j is the feature space based mean square error after
registering the image i into the image j and E is entropy. Further
theoretical details of BRS selection algorithm can be found in [3, 4].

6. IMPLEMENTATION, EXPERIMENTS AND RESULTS

Registration of histological slices requires serial registration proce-
dure which is just a combination of transformation functions. Let
{Aj←i|i < j} be the transformation function that warps the source
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image i into the target image j. The transformation Aj←i is com-
puted serially as follows

Aj←i = Aj←j−1 ◦Aj−1←j−2 ◦ . . . Ai+1←i, for i < j

Aj←i = Aj←j+1 ◦Aj+1←j+2 ◦ . . . Ai−1←i, for i > j, (3)

where ◦ represents the composition.
One of the advantages of using the subvolume approach is to

avoid the “banana shape” effect resulting from the reconstuction pro-
cess [1, 2]. In serial registration, one of the disadvantages of using
affine registration is that we lose the topology of the reconstructed
volume. To reduce or eliminate this effect, one may need to use MRI
of the volume superimposed onto the reconstructed histological vol-
ume or use rigid registration.

In summary, registration is performed initially for slices in each
subvolume separately. Three kinds of registration are performed in
the reconstruction process: rigid, affine and LAGS. MSEs are cal-
culated according to affine registration in edgeness space and have
been used to select BRSs for each subvolume. Affine registration
is performed in a serial manner combining transformation functions.
Then, LAGS registration is performed to capture local deformations
in each subvolume with respect to the chosen reference. Once LAGS
registration has been finished, subvolumes are registered to each
other in a rigid manner.

6.1. Evaluations and Results

We have registered a stack of 350 Nissl-stained slices acquired by
cyro-sectioning coronally on an adult mouse brain with 590x520
pixels at a resolution of 15μm and 24-bit color format [10].

Quantitative evaluation of the results of the reconstruction pro-
cess is often difficult. It has been shown in [11] that an ideal measure
of the quality of the reconstruction is the smoothness of the recon-
structed surfaces. In this work, they propose a new measure based
on evaluation of smoothness of the reconstructed volume called Cor-
respondence Alignment Measure (CAM). As an alternative method
to CAM, we propose Standard Deviation Maps (SDM) to measure
the smoothness of the reconstructed volume. The method is based
on the standard deviation of the pixel values for the same location
in each section. The CAM and SDM results for the reconstructed
3D volume and validation of the SDM are given in the following
subsections.

6.1.1. CAM

The CAM measure relies on the assumption that if a point is per-
fectly aligned, it lies midway between its corresponding points on
neighbors’ sections. To compute the CAM measure for a given im-
age, first of all, corresponding points for specifed control points in
the image are identified. The associated confidence values in two
adjacent images are then calculated. If the confidence is greater
than a pre-defined threshold τ , square root of the summation of the
deformation vectors are added to the cumulative sum. Finally, the
cumulative sum is normalized by the number of pixels which have
contributed. Note that CAM gives one value for each image, there-
fore, mean or standard deviation of CAM values of serial images are
needed to compare reconstructions. Reconstucted volume is smooth
if the mean or the standard deviation of CAM measures are low and
vice versa.

Summary of the changes in mean and standard deviation in
CAM values is given by Table 1. The values in Table 1 are obtained
by considering the worst case which uses all the slices instead of
just a few slices from the middle of the stack as defined in [11], and

τ is set to 0. Even for the worst case, CAM values indicate that a
smooth volume is constructed with the proposed framework. While
mean values dropped by 7.29% and 18.69%, the standard deviation
values dropped by 24.46% and 27.73% for affine and locally affine
registered stacks respectively.
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Fig. 2. CAM for original and registered slices

Table 1. CAM-mean and standard deviation values for reconstructed
3D

– Rigid Reg. Affine Reg. LAGS Reg.

Mean 55.911 51.832 45.461

Std 12.223 9.232 8.833

6.1.2. SDM

We offer here a simple way of measuring the quality of the recon-
struction by considering the smoothness of the reconstructed sur-
faces. If the reconstructed volume is naturally smooth, it means that
the structures change smoothly and slowly from slice to slice which
highly depends on the registration quality.

Assumption: For any reconstucted volume V , which is a se-
quence of images F(j), j = 1, .., M , if we take the same pixel po-
sition v for all slices in F, one should expect smooth transition of
pixel values within the slices of F, if the slices are well registered.

To validate this assumption experimentally, a 3D MRI volume
MV is taken and its slices are warped by applying random deforma-
tions spanning high-to-low level. The randomly warped slices are
used to reconstruct a warped 3D MRI volume MVw for which we
compute SDM and compare it with the smoothness ofMV .

Figure 3 shows the experimental validation of SDM for differ-
ent level of deformations applied to the slices of MV . While the
first SDM (the first image in the first row) has carried the highest
deformation level, the level of deformation has been decreased un-
til the last SDM (the third image in the second row) is obtained,
which carries no deformation level, MV itself. As the deformation
level decreases, the smoothness level of MVw approaches the orig-
inal volume MV . SDMs for the reconstructed volume MVw for
w =rigid, affine and LAGS are shown in Figure 4, both in gray scale
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Fig. 3. SDMs for warped volumes spanning from high-to-low level
of deformations

and spectrum format. Although the volume reconstructed by succes-
sive affine registrations is smoother than the volume reconstructed by
successive rigid registrations, it includes the ”banana-shape” effect
which can be corrected by superimposing MRI of the rat brain (if
available) on the reconstructed volume. Among three methods, the
smoothest reconstructed volume is obtained by the proposed method
shown in the last SDM in Figure 4.
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Fig. 4. Standard Deviation Maps for Rigid registered, Affine-
Registered and Elastic-Registered Stacks

7. CONCLUSION

In this paper, we have presented a novel framework to reconstruct
3D rat brain volume from 2D histological images. The framework
is based on three fundamental premises. (1) All histological im-
ages must be standardized for accurate registration leading to 3D

volume reconstruction. (2) For accurate and succesful registrations
in consecutive slices, a reliable feature space must be taken into ac-
count. (3) For automatic 3D volume reconstruction, the reference
slice must be chosen properly by avoiding slices with high noise,
distortions and other factors. To validate the reconstructed volume,
the smoothness of the volume is considered. In addition to the ex-
isting method CAM, we have proposed a method called SDM to
measure the smoothness of the reconstructed volume. Qualitative
and quantitave evaluation of experimental results indicate that the
reconstructed volume is highly accurate.
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